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What is Galois Theory?

Galois Theory provides a connection between Group Theory and
Field Theory. It originated with the study of polynomials in higher
dimensions and arbitrary fields.

(a) Évariste Galois (b) Lattice of Galois groups
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The Book

Nearly everything we say in this talk comes from Ian Stewart’s
Galois Theory, third edition.
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Groups

Definition 1.1

A group, (G , ·) is a set with a binary operation · such that

1 G is closed under ·.
2 · is associative.

3 · has identity and inverses.

A group is called abelian if the binary operation is also
commutative.

A common example of a group is (Zn,+), the group of integers
mod n under addition. This group is also abelian.

Allison Ramasami, James Hazelden An Introduction to Galois Theory



Introduction
Field Extensions

Ruler and Compass Constructions
Fundamental Theorem of Galois Theory

Regular Polygons
Solubility of the Quintic

Fields

Definition 1.2

A field, (F ,+, ·), is a set with two binary operations + and ·,
called addition and multiplication, that satisfies these properties:

1 F is closed under + and ·.
2 + and · are associative and commutative.

3 There is an additive identity 0 and a multiplicative identity 1,
where 0 and 1 are distinct.

4 + and · have inverses.

5 + and · obey a distributive law: if a, b, c ∈ F then
a · (b + c) = a · b + a · c .

As an example, Q, R, and C are all fields.
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Subfields

Definition 1.3

A set E is said to be a subfield of F if E ⊆ F and E is a field
under the same operations as F .

A sufficient condition for a subset of a field to be a subfield is that
it is closed under addition, multiplication, additive inverses and
multiplicative inverses. An example of a subfield is Q: it is a
subfield of R and C.
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Homomorphisms

Definition 1.4

Let F ,G be fields. A field homomorphism is a function f : F → G
such that for all a, b ∈ F :

1 f (a + b) = f (a) + f (b)

2 f (a · b) = f (a) · f (b)

Note that on the left hand side, we are doing an operation in F ,
but on the right hand side, we are doing the same operation but in
G . A homomorphism can be thought of as a structure-preserving
map: it not only maps F to G, but preserves the additive and
multiplicative structures of these fields.
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Homomorphisms

There are different types of homomorphisms depending on the
function at hand:

A monomorphism is an injective homomorphism.

An isomorphism is a bijective homomorphism.

An automorphism is an isomorphism from a field to itself.

A field that is isomorphic to another can be thought of as simply a
copy with different ”labels” for the elements. The isomorphism
essentially just ”re-labels” the elements, while preserving the
structure.
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Polynomials

Definition 1.5

A polynomial f over some field F is a function of the form
a0 + a1 · t + a2 · t2 + ...+ an · tn, where t is an arbitrary
indeterminate and ai ∈ F .

Definition 1.6

An element α of F is said to be a zero or solution of a polynomial
f if f (α) = 0.
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Polynomials

Definition 1.7

The degree of a polynomial p, denoted deg(p), is the largest
exponent that occurs in the polynomial.

Definition 1.8

A polynomial is monic if the coefficient on the highest degree term
is 1.

Definition 1.9

A polynomial is reducible over K if it is the product of two
polynomials with coefficients in K of smaller degree. Otherwise it
is irreducible over K .
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Field Extensions

For the remainder of this talk, when we refer to a field, it will
always be a subfield of C. While Galois theory is certainly possible
and interesting with other fields, we only need C.

Definition 2.1

A field extension L : K is an monomorphism f : K ↪→ L.

As an example, R is a field extension of Q since there is an
inclusion map f : Q→ R. This definition is quite formal, so we will
not work with it much.
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Field Extensions

Definition 2.2

If A is a set and K is a subfield of C, then the field K (A) is the
smallest subfield of C containing K and A. We say that K (A) is
obtained by adjoining the elements of A to K .

We note that any field of this form is a field extension of K , and
this is the type of extension we will be dealing with for the talk.
Here are some examples:

1 Q(
√

2) = {a + b
√

2 | a, b ∈ Q}.
2 Q( 3

√
3) = {a + b 3

√
3 + c 3

√
3
2 | a, b, c ∈ Q}.

3 Q(
√

5, i) = {a + b
√

5 + ci + di
√

5 | a, b, c , d ∈ Q}.
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Field Extensions

Proposition 2.3

Any subfield of C contains Q.

Proof.

Let K be a subfield of C. Then K necessarily contains 0 and 1:
otherwise it would not be a field. Because K is closed under
addition and additive inverses, we must also get all of Z in K .
Because K is closed under multiplication and multiplicative
inverses, we must get all of Q.
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Types of Field Extensions

Definition 2.4

A field extension L : K is simple if L = K (α), where α ∈ L.

We will denote the extension K (α) : K instead of L : K for the rest
of this talk.

Definition 2.5

Let K be a subfield of C. A number α is algebraic over K if there
is a polynomial p with coefficients in K such that p(α) = 0.
Otherwise, α is said to be transcendental over K .

We will say algebraic for algebraic over Q and transcendental for
transcendental over Q.
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Types of Field Extensions

Definition 2.6

Let L : K be a simple field extension, where L = K (α). Then,

1 L : K is an algebraic extension if α is algebraic over K .

2 L : K is a transcendental extension if α is transcendental over
K .

As an example, Q(
√

2) : Q is an algebraic extension because
√

2 is
a zero of the polynomial p(t) = t2 − 2.
Q(π) : Q is a transcendental extension because π is transcendental
over Q.
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Classifying Simple Extensions

Can we classify all possible simple extensions, up to isomorphism?
To do this, we first need to introduce some notation. If K is a
field, then we denote

The polynomial ring K [t] to be the set of all polynomials with
indeterminate t and coefficients in K .

K (t) as the set of rational expressions
p(t)

q(t)
, where

p, q ∈ K [t].

We note that K (t) is a simple transcendental extension of K .
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Classifying Simple Extensions

We mentioned up to isomorphism on the previous slide, but what
is an isomorphism of field extensions?

Definition 2.7

An isomorphism of two field extensions K : L and K ′ : L′ is a map
f such that

1 f is a field isomorphism between L and L′.

2 f |K is a field isomorphism between K and K ′.

Intuitively, we want the big fields L and L′ to be isomorphic for the
extensions to be isomorphic. If K and K ′ are different, then f
should induce an isomorphism between these two fields because
K ⊆ L.
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Classifying Simple Extensions

Proposition 2.8

Let L : K be a field extension, and α ∈ L. Then there is a unique
monic polynomial p ∈ K [t] such that p(α) = 0 and p has minimal
degree.

Proof.

We can make any polynomial monic by dividing by the coefficient
on the highest degree term, so this is not an issue. To show
uniqueness, suppose p, q are two different polynomials such that
p(α) = q(α) = 0 and both have minimal degree. Then the
polynomial p − q is nonzero, has α as a zero and has smaller
degree than p and q, since they are both monic. But then p − q
has minimal degree, which is a contradiction.
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Classifying Simple Extensions

We call this unique monic polynomial the minimal polynomial of α
over K .

Lemma 2.9

If m is the minimal polynomial of α over a subfield K of C, then m
is irreducible.

Proof.

Suppose m is reducible. Then m(α) = p(α)q(α) = 0, so either
p(α) = 0 or q(α) = 0. But then m is not the minimal polynomial,
which is a contradiction.
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Classifying Simple Extensions

Before we can give a classification of simple extensions, we must
discuss polynomial congruences, which proceeds in a very similar
manner to number theory.

Definition 2.10

Let a, b,m ∈ K [t]. We say

a ≡ b (mod m)

if m | a− b in K [t].

Similar to integers, ≡ (mod m) is an equivalence relation, and
addition and multiplication mod m are well defined operations.
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Classifying Simple Extensions

Definition 2.11

We define the ring K [t]/〈m〉 as the set of equivalence classes of
K [t] under the equivalence relation ≡ (mod m).

This is technically just a quotient ring modulo an ideal, but the
description given here gives a better idea of what is going on in the
ring. We note that this ring is a field if and only if m is irreducible.
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Classifying Simple Extensions

Now that we have the background out of the way, we can finally
classify simple extensions.

Theorem 2.12

Let K (α) : K be a transcendental extension. Then it is isomorphic
to the field extension K (t) : K of rational expressions in the
indeterminate t.
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Classifying Simple Extensions

Proof.

Define the map f : K (t)→ K (α) as

p(t)

q(t)
7→ p(α)

q(α)
.

We can check that f is a field isomorphism whose restriction to K
is the identity map, so these extensions are isomorphic.
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Classifying Simple Extensions

Theorem 2.13

Let K (α) : K be an algebraic extension, and m be the minimal
polynomial of α over K . Then there is an isomorphism
f : K (α)→ K [t]/〈m〉 such that f |K is the identity.

Proof.

Define f : K [t]/〈m〉 → K (α) by [p(t)] 7→ p(α), where [p(t)] is the
equivalence class of p(t). f is well defined because f (m(t)) = 0,
and we can verify this is a field isomorphism whose restriction to K
is the identity.
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Classifying Simple Extensions

Theorem 2.14

Let K (α) : K and K (β) : K be field extensions such that α and β
have the same minimal polynomial m. Then these field extensions
are isomorphic.

Proof.

Since the big fields K (α) and K (β) are isomorphic to K [t]/〈m〉, so
they are isomorphic to each other.
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Classifying Simple Extensions

With these last couple theorems, we can completely classify simple
extensions:

1 There is only one simple transcendental extension up to
isomorphism.

2 Algebraic extensions are determined by the minimal
polynomial of the element we adjoin.
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Degree of a Field Extension

If we have a field extension L : K , then we can think of L as a
vector space over K in the following sense:

If λ ∈ K and v ∈ L, then λv is scalar multiplication.

If u, v ∈ L then u + v is addition.

Thinking about the field extension in this way, we define the
degree of a field extension.

Definition 2.15

The degree of a field extension [L : K ] is the dimension of L
considered as a vector space over K .

Recall that the dimension of a vector space is the cardinality of any
basis of the space.
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Degree of a Field Extension

Here are some examples:

1 The extension Q(
√

2) : Q is the set {a + b
√

2 | a, b ∈ Q}. We
can then see its degree is 2, as a basis for Q(

√
2) over Q is

the set {1,
√

2}.
2 The extension Q(i ,

√
5) : Q is the set

{a + bi + c
√

5 + di
√

5 | a, b, c , d ∈ Q}. Its degree is 4,
because a corresponding basis for the extension is the set
{1, i ,

√
5, i
√

5}.
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Degree of a Field Extension

Theorem 2.16

Let K (α) : K be a field extension. If the extension is
transcendental, then [K (α) : K ] is infinite. If the extension is
algebraic, then [K (α) : K ] = deg(m), where m is the minimal
polynomial of α over K .

Proof.

If the extension is transcendental, then the set {1, α, α2, . . . } is
linearly independent. Since any linearly independent set can be
extended to a basis, the degree of the extension is infinite. If the
extension is algebraic, then the set {1, α, . . . , αdeg(m)−1} is a basis
for the space. Therefore the extension has degree deg(m).
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The Tower Law

While our current methods to determine the degree of an extension
do work, they can be quite tedious and confusing if the extension
is very complicated. Fortunately, there is an easier way:

Theorem 2.17

Let K ⊆ M ⊆ L be fields. Then

[L : K ] = [L : M][M : K ].

Note that if [L : M] or [M : K ] are infinite, then [L : K ] is infinite
as well, and vice versa.

Proof.

Suppose {xi}i∈I is a basis for M : K , and {yj}j∈J is a basis for
L : M. Then one can verify {xiyj}i∈I , j∈J is a basis for L : K .
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The Tower Law

Consider the extension Q(
√

2,
√

3) : Q. Then using the Tower Law,

[Q(
√

2,
√

3) : Q] = [Q(
√

2,
√

3) : Q(
√

2)][Q(
√

2) : Q]

We can see that [Q(
√

2) : Q] = 2, and it turns out because√
3 /∈ Q(

√
2) that [Q(

√
2,
√

3) : Q(
√

2)] = 2 as well. So the total
degree is 2 · 2 = 4.
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The Tower Law

While this works, it can be made more general in the following
sense:

Theorem 2.18 (Tower Law)

Let K0 ⊆ K1 ⊆ · · · ⊆ Kn. Then

[Kn : K0] = [Kn : Kn−1][Kn−1 : Kn−2] · · · [K1 : K0]

Proof.

Induct on n and use the previous theorem.
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The Tower Law

We call an extension finite if its degree is finite.

Lemma 2.19

An extension L : K is finite if and only if L = K (α1, . . . , αn), where
each αi is algebraic over K .

Proof.

If L = K (α1, . . . , αn) and each αi is algebraic, then its degree can
be shown to be finite by the tower law.
If L : K is finite, suppose its degree is n. Then let x ∈ L, and
observe the set {1, x , . . . , xn} is linearly dependent because it has
size n + 1. So a0 + a1x + · · ·+ anx

n = 0 where each ai ∈ K . But
this implies x is algebraic over K , so the extension is algebraic.
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Ruler and Compass Constructions

Figure: Euclid

The problem of ruler and compass construc-
tions began with the Ancient Greeks and has
been classically studied throughout history. The
problem is to construct a shape using only a
straight-edge and a compass. We will prove
that three classical problems are impossible: du-
plicating the cube, trisecting the angle, and
squaring the circle. First, let’s see some ex-
amples of possible constructions.
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Equilateral Triangle
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Perpendicular Bisector
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Common Tangent to Two Circles
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17-Gon
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Algebraic Formulation

Definition 3.1

A ruler and compass construction is a sequence of applications of
the following operations, with P ⊆ R2:
Ruler: Draw a line through any two points in P,
Compass: Draw a circle whose center is a point in P and whose
radius is the distance between two points in P.
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Constructibility

Definition 3.2

Let P0 ⊆ R2. The points of intersection of any lines and circles
drawn using ruler and compass from P0 are said to be constructible
in one step from P0. More generally, a point r is said to be
constructible if there is a finite sequence of points, r1, ..., rn = r
such that ri is constructible from P0 ∪ {r1, ..., ri−1}
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Constructibility

Lemma 3.3

Let P ⊆ R2 and let K be the subfield of R generated by the x and
y coordinates in P. Then, if p = (x , y) is constructible in one step
from P, x and y are solutions to quadratic equations over K .

Proof.

There are three cases: line intersects with line, line intersects with
circle, and circle intersects with circle. In each of these cases, the
equations for x or y are reduced to quadratics over K , so we are
done.
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Constructibility: Central Theorem

Theorem 3.4

Let r be constructible from P0 ⊆ R2 by the sequence r1, ..., rn = r .
Define Pi = P0 ∪ {r1, ..., ri} and Ki to be the subfield of R
generated by the x , y coordinates of Pi . With this notation: if
r = (x , y) is constructible from P0, then [K0(x) : K0], [K0(y) : K0]
are powers of 2.

Proof.

This result is essentially just a generalization of the previous
lemma. Just use induction and the tower law.
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Constructibility: Central Theorem

It turns out that this simple theorem is all we need to prove the
impossibility of the three constructions we cover. In each case, we
prove that if the construction is possible, then we can construct
some point that has minimal polynomial with degree not a power
of 2. This gives us the desired contradiction. We will cover three
different long-standing problems that were resolved with this
technique.

Allison Ramasami, James Hazelden An Introduction to Galois Theory



Introduction
Field Extensions

Ruler and Compass Constructions
Fundamental Theorem of Galois Theory

Regular Polygons
Solubility of the Quintic

Duplicating the Cube

This problem, as with the other two we cover, was first proposed
by the Ancient Greeks. The question is this: given the edge of a
cube, can we construct a second cube whose volume is double the
volume of the original cube? The image should give you a hint:
consider the minimal polynomial of 3

√
2.

Allison Ramasami, James Hazelden An Introduction to Galois Theory



Introduction
Field Extensions

Ruler and Compass Constructions
Fundamental Theorem of Galois Theory

Regular Polygons
Solubility of the Quintic

Duplicating the Cube

Theorem 3.5

The problem of duplicating the cube using ruler and compass is
impossible.

Proof.

We must be able to construct α = 3
√

2. But this has minimal
polynomial t3 − 2 of degree 3. Thus, [Q(α) : Q] is not a power of
2.
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Trisecting the Angle

Definition 3.6

This problem is easily stated: given an angle θ construct the angle
θ
3 (using ruler and compass).
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Trisecting the Angle

Theorem 3.7

Trisecting the angle is impossible in general. Specifically, the angle
π
3 cannot be trisected with ruler and compass.

Proof.

We must be able to construct β = 2 cos(π9 ). But the triple angle
identity, cos(3θ) = 4 cos3(θ)− 3 cos(θ), gives us then that
β3 − 3β − 1 = 0. This polynomial turns out to be irreducible, so
this is the minimal polynomial of β, so the extension Q(β) : Q has
degree 3. But for β to be constructible, the extension must have
degree a power of 2, but 2k 6= 3.
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Squaring the Circle

Definition 3.8

This is the most famous attempted problem of the three. It can be
stated as such: given a circle, construct a square with the same
area. Claims at solving this problem have been made for over 3000
years! However, Galois Theory shows that it is impossible (with
ruler and compass).
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Squaring the Circle

Theorem 3.9

The circle cannot be squared using ruler and compass.

Proof.

We have to construct the point (0,
√
π). However, if this is

constructible, so is the point (0, π). But, π is transcendental over
K0 = Q, so the degree [K0(π) : K0] is infinite and definitely not a
power of 2.
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Ruler and Compass Constructions: Summary

So, Galois Theory provides a useful way of looking at ruler and
compass constructions and determining what is and isn’t
constructible. Now, we move on to the the Fundamental Theorem
of Galois Theory.
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Normal Extensions and Separability

Definition 4.1

Let K be a field. Then a polynomial splits over K if it factors into
linear factors over K .

As an example, the polynomial t2 − 2 splits over Q(
√

2), since it
factors as

t2 − 2 = (t +
√

2)(t −
√

2).

over Q(
√

2).
The polynomial t3 − 2 does not split over Q( 3

√
2), since

t3 − 2 = (t − 3
√

2)(t2 +
3
√

2t +
3
√

2
2
)

and the second factor is irreducible over Q( 3
√

2).
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Normal Extensions and Separability

Definition 4.2

Let K be a field, and p ∈ K [t] be a polynomial. Then the splitting
field Σ of p is a field that satisfies

1 p splits over Σ.

2 Σ is the smallest field that does this: if p splits over another
field Σ′ ⊇ Σ, then Σ = Σ′.

Proposition 4.3

If p ∈ K [t] and α1, . . . , αn are its roots, then the splitting field of
p is simply K (α1, . . . , αn).

Allison Ramasami, James Hazelden An Introduction to Galois Theory



Introduction
Field Extensions

Ruler and Compass Constructions
Fundamental Theorem of Galois Theory

Regular Polygons
Solubility of the Quintic

Normal Extensions and Separability

Proof.

Clearly, p splits over K (α1, . . . , αn). If p splits over another field
L ⊂ K (α1, . . . , αn), then p will not split over L as it does not
contain some root αi . Therefore the second condition holds.

Two immediate corollaries of this theorem are that the splitting
field is unique and that the extension Σ : K has finite degree. This
also makes the computation of the splitting field of a polynomial
really simple: just adjoin all its roots to the base field, and we have
the splitting field. For the example t3 − 2, then its splitting field is
Q(α, αω, αω2), where α = 3

√
2 and ω = e2πi/3.
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Normal Extensions and Separability

Definition 4.4

A field extension L : K is normal if every irreducible polynomial
that has a root in L splits over L.

From the definition, it is not obvious how to determine whether an
extension is normal or not.

Theorem 4.5

A field extension L : K is normal and finite if and only if L is the
splitting field of some polynomial over K .
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Normal Extensions and Separability

Proof.

Suppose L : K is normal and finite. Because it is finite,
L = K (α1, . . . , αn) where each αi is algebraic. Each αi has a
minimal polynomial mi which is irreducible over K , so we construct
the polynomial f = m1 · · ·mn. L is the splitting field of f because
L = K (α1, . . . , αn).
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Normal Extensions and Separability

Proof.

Suppose L is the splitting field of f ∈ K [t]. It is finite because it is
a splitting field, so we must prove normality. Let g ∈ K [t] be
irreducible and α1, α2 be roots of g . The idea is to observe that

[L(α1) : L][L : K ] = [L(α1) : K (α1)][K (α1) : K ]

[L(α2) : L][L : K ] = [L(α2) : K (α2)][K (α2) : K ].

and show the right hand sides of these equations are equal, so
[L(α1) : L] = [L(α2) : L]. This implies if α1 ∈ L, then α2 ∈ L and
we are done.
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Normal Extensions and Separability

Definition 4.6

An irreducible polynomial is separable over a field K if it has no
repeated roots in K .

Over C, every irreducible polynomial is separable. The way to
prove this is to show a polynomial p has repeated roots if and only
if p and Dp have a non-constant factor in common. Since this is a
bit useless in C, we will ignore it for the remainder of this talk.
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The Galois Group

Definition 4.7

Let L : K be a field extension. Then a K -automorphism of L is a
map α : L→ L such that

1 α is an automorphism of L.

2 If k ∈ K , then α(k) = k . In other words, α fixes K .

While this is a complicated definition, one can think of it as a
symmetry of the elements we adjoin to K to get L. As an example,
the extension Q(

√
2) : Q has a Q-automorphism α which sends

1 α(k) = k, k ∈ Q
2 α(

√
2) = −

√
2

so any polynomial relation that
√

2 satisfies, −
√

2 also satisfies.
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The Galois Group

Theorem 4.8

If L : K is a field extension, then the set of all K -automorphisms of
L forms a group under function composition.

Proof.

We can check the operation is closed: if α, β are K -automorphisms
then αβ is an automorphism, and if k ∈ K then
α(β(k)) = α(k) = k . The operation is associative because
function composition is associative. The identity is the identity
automorphism ι(x) = x , which also fixes K . The inverse of a
K -automorphism α is the inverse function α−1, which also fixes K
as α fixes K .
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The Galois Group

We call the group of automorphisms above the Galois group of the
extension L : K , which we denote Γ(L : K ). We will compute two
explicit examples of Galois groups: one for Q(

√
2) : Q and one for

Q( 3
√

2) : Q.
For Q(

√
2) : Q, let α be a Q-automorphism. Then

α(
√

2)2 = α(
√

2
2
) = α(2) = 2.

From this we can conclude either α(
√

2) =
√

2 or α(
√

2) = −
√

2.
This actually completely determines the automorphism, because if
we take an arbitrary element a + b

√
2 ∈ Q(

√
2),

α(a + b
√

2) = α(a) + α(b)α(
√

2) = a + bα(
√

2).
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The Galois Group

So there are two automorphisms in the Galois group:

α(a + b
√

2) = a + b
√

2

β(a + b
√

2) = a− b
√

2

so the Galois group is isomorphic to Z2, the group with two
elements.
For the Galois group of Q( 3

√
2) : Q, we use the same trick:

α(
3
√

2)3 = α(
3
√

2
3
) = α(2) = 2

But the only solution to this is α( 3
√

2) = 3
√

2, and the Galois group
has only one element, the identity.
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The Galois Group

Definition 4.9

Let L : K be a field extension. An intermediate field M is a
subfield of L such that K ⊆ M ⊆ L.

Definition 4.10

Suppose L : K is an extension, M is an intermediate field,
G = Γ(L : K ), and H is a subgroup of G . Then M∗ is the set of all
M-automorphisms of L. H† is the set of all x ∈ L such that if
α ∈ H, then α(x) = x . We call H† the fixed field of H.

Theorem 4.11

In the definition above, M∗ is a subgroup of G and H† is an
intermediate field.
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The Galois Group

We can also notice the following two facts:

1 If M ⊆ N are intermediate fields of L : K , then M∗ ⊇ N∗.

2 If H ⊆ K are subgroups of Γ(L : K ), then H† ⊇ K †.

We can also observe that if M is an intermediate field and H is a
subgroup of Γ(L : K ), that

1 M ⊆ M∗†.

2 H ⊆ H†
∗
.

This raises a question: when are these inclusions equalities?
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Fundamental Theorem of Galois Theory

It turns out this question is answered by the Fundamental Theorem
of Galois Theory: specifically, these inclusions are equalities
precisely when the extension is normal and separable: we call this a
Galois extension. There is an even deeper connection here,
however. It turns out that the subgroups of the Galois group
correspond exactly with the intermediate fields of the extension by
the maps ∗ and †!
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Fundamental Theorem of Galois Theory

Theorem 4.12

Suppose L : K is a separable, normal extension with Galois group
G . Then if M is an intermediate field and H is a subgroup of G ,
then

1 |G | = [L : K ].

2 ∗ and † are inverses of each other: that is, M = M∗† and
H = H†

∗
.

3 M : K is normal if and only if M∗ / G .

4 [L : M] = |M∗|.

5 If M : K is normal, then Γ(M : K ) is isomorphic to
G

M∗
.
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Fundamental Theorem of Galois Theory

The full proof of this theorem is too large to fit in this
presentation, but we can give the idea of the proof here. It relies
on monomorphisms rather than automorphisms:

Theorem 4.13

If λ1, . . . , λn are distinct monomorphisms, then they are linearly
independent.

The trick used in this proof can be used to prove the following
theorem:

Theorem 4.14

Let H be a finite subgroup of Γ(L : K ), and let M = H†. Then
[L : M] = |H|.
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Fundamental Theorem of Galois Theory

We also generalize the idea of a K -automorphism to a
K -monomorphism as follows:

Definition 4.15

Suppose K ⊆ M ⊆ L are fields. Then a K -monomorphism is a
monomorphism α : M → L such that if k ∈ K , then α(k) = k.

Allison Ramasami, James Hazelden An Introduction to Galois Theory



Introduction
Field Extensions

Ruler and Compass Constructions
Fundamental Theorem of Galois Theory

Regular Polygons
Solubility of the Quintic

Fundamental Theorem of Galois Theory

With many lemmas and theorems, we arrive at the following big
theorem:

Theorem 4.16

If L : K is a finite extension, then the following are equivalent:

1 L : K is normal.

2 There is a finite normal extension N of K containing L such
that every K -monomorphism from L to N is a
K -automorphism of L.

3 For every finite extension M of K containing L, every
K -monomorphism from L to M is a K -automorphism of L.

This, along with the previous theorem allows us to prove nearly all
of the Fundamental Theorem.
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Fundamental Theorem of Galois Theory

To give a worked example of this in action, we will calculate the
Galois group and fixed fields of Q(

√
2,
√

3) : Q. Since this
extension is a splitting field for the polynomial (t2 − 2)(t2 − 3), we
can use the Fundamental Theorem. Suppose α is a
Q-automorphism of Q(

√
2,
√

3). Then

α(
√

2)2 = α(
√

2
2
) = α(2) = 2

α(
√

3)2 = α(
√

3
2
) = α(3) = 3

so α(
√

2) = ±
√

2 and α(
√

3) = ±
√

3.
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Fundamental Theorem of Galois Theory

These facts determine four automorphisms:

1 : α(
√

2) =
√

2, α(
√

3) =
√

3

f : α(
√

2) = −
√

2, α(
√

3) =
√

3

g : α(
√

2) =
√

2, α(
√

3) = −
√

3

fg : α(
√

2) = −
√

2, α(
√

3) = −
√

3

If we look a bit harder at this, we can see there are 5 distinct
subgroups of this group. They are {1}, {1, f }, {1, g}, {1, fg}, and
{1, f , g , fg}.
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Fundamental Theorem of Galois Theory

We can now use the Fundamental Theorem to state properties of
the original extension: we can find the intermediate fields by
finding the fixed fields of all the subgroups of the Galois group. We
can see that
Q(
√

2,
√

3) = {a + b
√

2 + c
√

3 + d
√

6 | a, b, c , d ∈ Q}, so the
fixed fields are

{1}† = Q(
√

2,
√

3) {1, f , g , fg}† = Q

{1, f }† = Q(
√

3) {1, g}† = Q(
√

2) {1, fg}† = Q(
√

6)

We also notice that the order of the Galois group is 4, so the
degree of the extension should also be 4. We can verify the degree
using the Tower Law.
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Fundamental Theorem of Galois Theory

These observations can be summed up in the following diagram:

Here the correspondence between subgroups of the Galois group
and intermediate fields is clear, and we can also see it reverses
inclusions.
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Regular Polygons

Now, with this theory in hand, we go back to ruler and compass
constructions. The Ancient Greeks knew constructions for the 3-,
5-, and 15-gons and also knew how to construct a regular 2n-gon
given a regular n-gon. The natural question, then, is are these all
regular polygons that can be constructed by ruler and compass.
Gauss showed in 1796 that they are not: constructing the regular
17-gon as shown before. The natural question we ask, then, is
what regular polygons are constructible by ruler and compass?
First, we must build on the theory a bit.
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Regular Polygons

Definition 5.1

We say n is constructive if the regular n-gon is constructible by
ruler and compass.

Allison Ramasami, James Hazelden An Introduction to Galois Theory



Introduction
Field Extensions

Ruler and Compass Constructions
Fundamental Theorem of Galois Theory

Regular Polygons
Solubility of the Quintic

Regular Polygons

Lemma 5.2

If n is constructive and m divides n, then m is constructive.

Proof.

If the n-gon is constructible then join every n
m vertex to construct

the regular m-gon.
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Regular Polygons

Lemma 5.3

For any positive integer n, 2n is constructive.

Proof.

Use induction on n. Each time, bisect the angles of the regular
2n-gon to get a regular 2n+1-gon.
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Roots of Unity

To describe which polygons are constructible in the language of
Galois Theory, we now need a useful notion:

Definition 5.4

The solutions to the polynomial tn − 1 are said to be the nth roots
of unity. A root of unity ζ is said to be primitive if it is not the
kth root of unity for any k < n.
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Roots of Unity

Theorem 5.5

In C, the nth roots of unity take the form

e
2kπi
n = cos(2kπn ) + i sin(2kπn ) for k < n. Here is why we care: in

the complex plane, the roots of unity form the vertices of the
regular n-gon!

(a) 12th roots of unity (b) 5th roots of unity
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Roots of Unity

Lemma 5.6

Let p be prime, ζ a primitive pth root of unity in C. Then Q(ζ) : Q
has degree p − 1, and, in particular, ζ has minimal polynomial

f (t) = 1 + t + ...+ tp−1

Proof.

Note that f (t) = tp−1
t−1 . By definition, ζ is a root of tp − 1, so it is

also a solution of f (t). Next, f (t) can be proven to be irreducible
by Eisenstein’s criterion.
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Regular Polygons

Theorem 5.7

The regular n-gon is constructible by ruler and compass if and only
if n = 2rp1...ps where r , s ≥ 0, pi is an odd prime of the form
pi = 22

ri + 1 for positive integers ri .

Proof.

The general idea to show necessity is to round the problem down
to proving that pi is of the form 22

ri + 1. This follows from the
fact that divisors must also be constructive. Showing sufficiency is
a little more complicated. We must show that every prime of the
form 22

r
+ 1 is constructive. This is done by adjoining the pth root

of unity to Q. Show that this extension is Galois, and cyclic and
apply the fundamental theorem to round down the degree.
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Regular Polygons

This theorem means that we can construct a regular polygon by
ruler and compass if it is of the form 2n times some sequence of
odd primes of the form 22

r
+ 1. Primes of this form are called

Fermat primes. As of 2017, only 5 Fermat primes are known: they
are 3, 5, 17, 257, and 65537. The question of if the number of
Fermat primes is finite or not is still an open problem in number
theory.
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Solubility of the Quintic

We now turn to the problem of the solubility of the quintic and
polynomials of higher degree. This was Galois’ original motivation.
A polynomial is soluble if we can find an equation for the roots of
any polynomial of that degree using only nested roots. For
instance, the quadratic formula just uses second roots. The cubic
and quartic formulas also satisfy these criteria. We now show that
the quintic and above do not.
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Soluble Groups

This notion requires some knowledge of Group Theory that we
won’t go into detail on here, for the sake of time.

Definition 6.1

A group G is soluble if there is a sequence of normal subgroups
{1} = G0 / ... / Gn−1 / Gn = G such that the quotient Gi+1

Gi
is

abelian.

As an example, the group S3, the symmetric group on 3 elements,
is soluble because there is a sequence {1} /A3 / S3, where S3

A3

∼= Z2

and A3
{1}
∼= Z3.
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Radical Extensions

Definition 6.2

An extension L : K is radical if there is a sequence

K = K0 ⊆ K1 ⊆ · · · ⊆ Kn = L

where Ki = Ki−1(βi ), and βpii ∈ Ki−1, βi /∈ Ki−1.

A radical extension essentially means that we extending by pth

roots of elements in the previous extensions. E.g., Q(
√

2 +
√

2) is

a radical extension by the series Q ⊆ Q(
√

2) ⊆ Q(
√

2 +
√

2).

Allison Ramasami, James Hazelden An Introduction to Galois Theory



Introduction
Field Extensions

Ruler and Compass Constructions
Fundamental Theorem of Galois Theory

Regular Polygons
Solubility of the Quintic

Soluble Group

Theorem 6.3

The symmetric group Sn is soluble for n < 5. Otherwise, it is
insoluble.

Notice the 5 above and the fact that we are trying to prove that
the 5th degree polynomial is in general insoluble.
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The General Polynomial

Definition 6.4

Let K be a field, suppose that t1, . . . , tn are independent
transcendental elements over K ; i.e., there is no polynomial p over
K with p(t1, ..., tn) = 0. Then the general polynomial of degree n
”over” K (actually over K (s1, ..., sn)) is

f (t) = tn − s1t
n−1 + ...− sn−1t

1 + sn

Here the si are the elementary symmetric polynomials, defined as

s1 = t1 + t2 + · · ·+ tn

s2 = t1t2 + t1t3 + · · ·+ tn−1tn
...

sn = t1t2 · · · tn
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The General Polynomial

To say a polynomial is solvable is to say that the extension
K (t1, . . . , tn) : K (s1, . . . , sn) is a radical extension with the
previous definition: we can get a formula for the roots in terms of
the coefficients of the polynomial and repeated radicals. Now, here
is the big theorem:

Theorem 6.5

The Galois group of the splitting field of the general polynomial of
degree n, call it Σ, over K (s1, ..., sn) is isomorphic to Sn.
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The General Polynomial

Proof.

The idea is this: we start with the extension K (s1, ..., sn) with the
si s transcendental and independent in K . Then, it can be shown
that the ti s must be independent over K . But then we have n!
automorphisms of the ti s in Σ : K (s1, ..., sn). Thus, the Galois
group must be isomorphic to Sn.
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Insolubility of the Quintic

Theorem 6.6

Any polynomial of degree 5 or greater is insoluble.

Proof.

Let the degree be n ≥ 5. We must be able to solve the general
polynomial f of degree n by radicals. But the Galois group of f is
Sn, which is insoluble for n ≥ 5. Thus, we cannot solve f by
radicals. Q.E.D.
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Thank You!

Questions?
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